(1)

$$
e^{-|t|} \stackrel{\Sigma}{\longleftrightarrow} \frac{2}{\omega^{2}+1}
$$

(a) $\frac{d}{d t} e^{-|t|}$

From Table 5.1 Differentiation Property.

$$
\begin{aligned}
& \frac{d^{n}}{d t^{n}}[f(t)] \xrightarrow{F}(j w)^{n} F(w) \\
\therefore & \frac{d}{d t}\left[e^{-|t|}\right]=(j w)\left(\frac{2}{w^{2+1}}\right)
\end{aligned}
$$

(b) $\frac{1}{2 \pi\left(t^{2}+1\right)}$

From Eq 5.1
if, $f(f(t))=F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$.
then $\mathcal{F}^{-1}(F(\omega))=f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega$.
As $f(t) \rightarrow F(\omega)$, if func. of time exists such that $F(t)=\left.F(\omega)\right|_{\omega=t}$ then $F\{F(t)\}=2 \pi f(-\omega)^{\text {For }}(f-y=$ for $t=\omega]$

$$
\begin{aligned}
& \therefore \text { if } \\
& f(t)=e^{-14} \\
& F(\omega)=\frac{2}{\omega^{2}+1} \\
& F(t)=\frac{2}{t^{2}+1}
\end{aligned}
$$

given func. to solve is:

$$
\begin{aligned}
\mathcal{F}\left(\frac{1}{2 \pi\left(t^{2}+1\right)}\right) & =\frac{2}{2} \mathcal{F}\left(\frac{1}{2 \pi\left(t^{2}+1\right)}\right) \\
& =\frac{1}{4 \pi} F\left(\frac{2}{t^{2}+1}\right) . \\
& =\frac{1}{4 \pi} \mathcal{F}(F(t)) .
\end{aligned}
$$

As show earlier $f(F(t)) \rightarrow 2 \pi f(-\omega)$. where.

$$
\begin{aligned}
\frac{1}{4 \pi} f(F(t)) & \rightarrow \frac{2 \pi}{4 \pi} e^{-|-\omega|} \\
& =\frac{1}{2} e^{-|\omega|}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { Acc. Lo Hint There is confusion in the hint rect }\left(\frac{t-5 \mathrm{~ms}}{\text { logs }}\right) \\
& g_{2}(t)=\operatorname{rect}\left[\frac{t-5 \operatorname{sins}(-4 \sin (100 \pi t))}{\text { toms }}\right) \\
& \begin{aligned}
\Rightarrow f(t) & =\operatorname{rect}\left[\frac{t-5 m s}{10 \operatorname{sis}}\right] \\
g_{2}(t) & =f(t)(-4 \sin (100 \pi t))
\end{aligned} \\
& \Rightarrow A \sin \omega t=A\left[\frac{e^{-j \omega t}-e^{-j \omega t}}{2 j}\right] \\
& g_{2}(t)=A\left[\frac{f(t) e^{j \omega t}}{2 j}-\frac{f(t) e^{-j \omega t}}{2 j}\right] \Rightarrow \frac{-2}{j}\left(f(t) e^{i 100 \pi t}-f(t) e^{-j \operatorname{lon} t}\right)
\end{aligned}
$$

From 5.1
(1) $f\left[f(t) e^{j \omega_{0} t}\right] \rightarrow F\left(\omega-\omega_{0}\right)$

From 5. 2.

$$
f(\operatorname{rect}(t / T)) \rightarrow T \sin (\omega T / 2)
$$

Also as $f[f(t-t)] \rightarrow F(\omega) e^{-j \omega t_{0}} \quad$ using Time transformation 5.14

$$
\begin{aligned}
f(t) & =\operatorname{rect}\left(\frac{t-5 m j)}{10 m s}\right)=\operatorname{rect}(100 t-0.5), \tilde{f}(\operatorname{rect}(100 t-0.5))=\left(\frac{1}{100} \sin \left(\frac{\omega}{200}\right)\right. \\
G_{2}(\omega) & =\frac{2}{j}\left[F\left(\omega-\omega_{0}\right)-F\left(\omega+\omega_{0}\right)\right) \\
& =\frac{-0.02 e^{-0.005} 5}{j}\{\sin c[0.005(\omega+100)+\sin (6 \cdot 005(\omega-100 \pi)]
\end{aligned}
$$

$$
\begin{aligned}
& \text { additional notes for problem } 2 \\
& g_{2}(t)=-4 \sin 100 \mathrm{ht} \cdot \operatorname{rect}\left(\frac{t-5 \mathrm{~ms}}{10 \mathrm{~ms}}\right) \\
& \Rightarrow g_{2}(t)=f_{1}(t) \cdot f_{2}(t) \cdot \text { cohere, } f_{1}(t)=-4 \sin 100 \mathrm{mt} \\
& f_{2}(t)=\operatorname{rect}\left(\frac{t-5 \mathrm{~ms}}{10 \mathrm{~ms}}\right)
\end{aligned}
$$

now, $f_{1}(t)=-4 \sin 100 \pi t$

$$
\begin{array}{r}
\Rightarrow-4 \sin 100 \pi t \stackrel{F}{\rightleftarrows}-4\left[\frac{\pi}{j} \delta\left(\omega-\omega_{0}\right)-\frac{\pi}{j}\left(\omega+\omega_{0}\right)\right] ; \\
\omega_{0}=100 \pi
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow-4 \sin 100 \pi t \stackrel{\mathcal{F}}{4} 4 \pi j \delta(\omega-10 \pi)-4 \pi j \delta(\omega+100 \pi t) \\
& \mathcal{F}(-4 \sin 100 \pi t):
\end{aligned}
$$

again, $f_{2}(t)=\operatorname{rect}\left(\frac{t-5 m s}{10 \mathrm{~ms}}\right)$
$=h(t-5 \mathrm{~ms})$; where, $h(t)=$ rect $(t / 10 \mathrm{~ms})$
now, $h(t)=\operatorname{rect}(t / 10 \mathrm{~ms}) \longleftarrow \mathcal{Z} \longleftrightarrow T \operatorname{sine}(T \omega / 2) ; T=10 \mathrm{~m}$

$$
\begin{aligned}
\Rightarrow \quad \operatorname{rect}(t / 10 \mathrm{~ms}) \stackrel{\mathcal{F}}{\longleftrightarrow} & \frac{1}{100} \operatorname{sinc}\left(\frac{\omega}{200}\right) \\
T & =H(\omega)
\end{aligned}
$$

$$
h=\frac{10}{1000} \mathrm{~s}
$$

$$
=\frac{1}{100 \mathrm{~S}}
$$ ω $(-200 \pi)(-600 n)(-4000)(-200 \pi)$

$(200 \pi) \quad(400 \pi)(600 \pi)(800 \pi)$
we. know from time shift property of F.T.

$$
f\left(t-t_{0}\right) \stackrel{F}{\stackrel{F}{\longleftrightarrow} F(\omega) e^{-j \omega t_{0}} . . . ~}
$$

So, $f_{2}(t)=h(t-5 m s)$

$$
\begin{aligned}
& \Rightarrow h(t-5 m s)<\mathcal{F} \rightarrow H(\omega) e^{-j \omega t_{0}} \\
& \Rightarrow \operatorname{suc}\left(\frac{t-5 \mathrm{mg}}{10 \mathrm{mg}}\right) \not \mathcal{F} \rightarrow \frac{1}{100} \sin \left(\frac{\omega}{200}\right) e^{-j \omega \cdot \frac{5}{1000}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}\left[f_{1}(t) \cdot f_{2}(t)\right]=\frac{1}{2 \pi} \mathcal{F}(f(t)) * \mathcal{F}\left(f_{2}(t)\right)
\end{aligned}
$$

*F $[-4 \sin 100 n t \cdot \operatorname{rect}(t / 10 \mathrm{~ms})]=\left[\frac{4 \pi j}{\frac{5}{2 \pi}} \frac{10}{100} \sin \left(\frac{\omega-100 \pi}{200}\right), 4 \pi^{2}\right)$ orly contributes $\left.-\frac{4 r^{\prime} j}{100} \operatorname{sine}\left(\frac{\omega+1000}{200}\right)\right]\left[\begin{array}{c}\text { orly contrib. } \\ \text { a phase. } \\ \text { does }\end{array}\right.$ does not change the mognitual
$\frac{1}{100} \sin e\left(\frac{\omega+100 \pi}{200}\right)$ spectrum.
$\frac{1}{106} \sin \left(\frac{\omega+100 \pi}{200}\right)$

And $-4 \sin 100 \pi t \cdot \operatorname{rect}\left(\frac{t-5 \mathrm{~ms}}{10 \mathrm{~ms}}\right)$

$$
\begin{aligned}
& \angle F \quad \frac{1}{2 n}\left(\frac{4 \pi j}{100} \sin \left(\frac{\omega-100 \pi}{200}\right) e^{\frac{-j \omega}{200}}\right. \\
& -\frac{4 \pi j}{100} \sin \left(\frac{\omega+100 n}{200 \pi}\right) e^{-\frac{j \omega}{200}} \\
& \Rightarrow-4 \sin 100 \pi+\cdot \operatorname{rect}\left(\frac{t-5 m s}{10 m s}\right)=\frac{j}{50} \operatorname{sinc}\left(\frac{\omega-100 \pi}{200}\right) e^{-\frac{j \omega}{200}} \\
& -\frac{j}{50} \sin c\left(\frac{\omega+100 n}{200}\right) e^{-\frac{3 \omega}{200}}
\end{aligned}
$$

(3)

To calculate frepiessp. of filter we cat. Transfer Function

$$
H(\omega)=\frac{V_{0}(\omega)}{V_{i}(\omega)}
$$

For $V_{0}(\omega)$, apply KUL at op. Loop I

$$
-v_{0}(t)+v_{L}(t)+v_{L}(t)=0 .
$$

$$
\begin{aligned}
& V_{0}(t)=V_{c}(t)+V_{L}(t) \\
& V_{0}(t)=L \frac{d^{i}(t)}{d t}+\frac{1}{c} \int_{-\infty}^{t} i(\tau) d \tau
\end{aligned}
$$

Take FT for intial condition $J(E)=0$

$$
V_{0}(\omega)=j \omega L I(\omega)+\frac{1}{j \omega C} I(\omega)
$$

For $V_{i}(\omega)$, apply KVL at 1/p Loop 2.

$$
-v_{i}(t)+R i(t)+L \frac{d}{d t}(t)+\frac{1}{c} \int_{-\infty}^{t} i(\tau) d \tau
$$

Again take FT for intial condition $I(0)=0$.

$$
U_{1}(\omega)=R I(\omega)+j \omega L I(\omega)+\frac{1}{j \omega C} I(\omega)
$$

$$
\therefore H(\omega)=\frac{J \omega<I(\omega)+\frac{1}{J \omega C} I \omega}{R I \omega)+j \omega L I(\omega)+\frac{1}{J \omega C} I(\omega)}
$$

Taking $I(\omega)$ common ξ canned it

$$
\begin{aligned}
& H(\omega)=\frac{j \omega L+\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}} \\
&=\frac{\left(\rho^{2} \omega^{2} L C+1\right) / \omega^{2} C}{\left(j \omega R C+j^{2} \omega^{2} L C+1\right) / j \omega C} \\
&=\frac{1-\omega^{2} L C}{j \omega R C+\left(1-\omega^{2} L C\right)} \\
&=\frac{1}{j \omega R C+\left(1-\omega^{2} L C\right)} \\
& H\left(1-\omega^{2} L C\right) \\
&=\frac{1}{1+j\left(\frac{\omega^{2} R C}{\left.1-\omega^{2} L C\right)}\right.}
\end{aligned}
$$

The circuit in above figure 6.6 is a typical band Reject filter: To vestry this: $(1+\jmath \alpha)$ is the pole. put $\left|\frac{\omega R C}{1-\omega^{2} L C}\right|=1$, plug in some convimant values of RLC Solve for w, plot Mannitule Response for range of values of w. Yo w will see Bund Reset,

