EE103 Final Examination
 June 13, 2017 12:00-3:00 p.m.

Name \qquad ID \qquad
[1]. (10 points) Given $x(t)$ shown below plot its even function $x e(t)$ and odd function $\mathrm{xo}(\mathrm{t})$. The vertical axis is at $\mathrm{t}=1$. The horizontal axis is t -axis.

[2](15 points) For a Linear Time-Invariant System (LTI) with its impulse response function of $h(t)$,
(a)(10 points) Derive an expression for its output $y(t)$ corresponding to a bounded input $\mathrm{x}(\mathrm{t})$ as $\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau$. For each step, explain your reasoning.
[2](b)(5 points) Find and plot $y(t)$ for $x(t)=u(t)-u(t-2), h(t)=(-t+3) u(t-2)$
[3](25 points) For $x(t)=4 \cos 4 \pi t+3 \sin 4 \pi t$,
(a)(10points) Express in the form of $x(t)=A \cos (k \pi t+\emptyset)$. (hint: $\arctan 1=45^{\circ}$, $\arctan 4 / 5=38.66^{\circ}, \arctan 3 / 5=30.96^{\circ}$)
(b) (5 points) Find $X(s)$, the Laplace transform of $x(t)$
[3](c) (10 points) Find $\mathrm{y}(\mathrm{t})$ for $\mathrm{h}(\mathrm{t})=e^{-10 t} \mathrm{u}(\mathrm{t})$ by using the Laplace transform method $\mathrm{Y}(\mathrm{s})=\mathrm{H}(\mathrm{s}) \mathrm{X}(\mathrm{s})$ and then taking Inverse Laplace Transform of $\mathrm{Y}(\mathrm{s})$.
[4] (20 points) For $H(s)=100 \frac{s+1000}{(s+10)(s+100)}$ draw its Bode plot using a semi-log graph with appropriate marking of vertical coordinate in dB and horizontal axis in $\log _{10} \omega$. Show all the steps for derivation of Bode plot, in other words show the calculation of $20 \log _{10} \mid H(j \omega)$ ।.

[5](20 points) Find Fourier Transform $F(\omega)$ for $f(t)=\operatorname{Cos} 20 \pi t \times \operatorname{Rect}(t / T)$, where $T=100 \mathrm{mS}=0.1 \mathrm{~S}$.
[6](10 points) Explain the most important subjects or concepts you have learned from EE103 and how you might apply in the future.

