$$
\text { EEl } 103 \text { - HWy }
$$

(1) The signals in Hgure PZ.I are zero except as shown.
@ For the signal $x(t)$ of Figure P2.1@, plot
(i) $x(-t / 3)$
(ii) $\times(-t)$
(iii) $x(3+t)$
(iv) $\times(2-t)$
verify your results by checking at least two points
(a)

(i) $x(-t / 3)$

$$
\begin{aligned}
& t=9, x\left(-\frac{9}{3}\right)=x(-3)=1 \\
& t=-9, x\left(-\left(\frac{-9}{3}\right)\right)=x(+3)=2 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& t=0, x(3+0)=x(3)=2 \\
& t=3, x(3-3)=x(0)=1 \\
& t=6, x(3-6)=x(-3)=1
\end{aligned}
$$

(iv) $x(2-t)$

$$
\begin{aligned}
& t=-1, x(2+1)=x(3)=2 \\
& t=2, x(2-2)=x(0)=1 \\
& t=5, x(2-5)=x(-3)=1
\end{aligned}
$$

(2) The average value A_{x} of a signal $x(t)$ is given by

$$
A_{x}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) d t
$$

Let $X_{e}(t)$ be the even part $g X_{0}(t)$ be the odd part of $X(t)$
(a) show that

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{0}(t) d t=0 \\
& \int_{-T}^{T} x_{0}(t) d t=\int_{-T}^{0} x_{0}(t) d t+\int_{0}^{T} x_{0}(t) d t \quad \| x_{0}(t)=-x_{0}(-t) \\
& \Rightarrow \int_{-T}^{0} x_{0}(t) d t=-\left.\int_{-T}^{0} x_{0}(-t) d t\right|_{x=-\tau} \\
&= \int_{-T}^{0} x_{0}(\tau) d \tau \\
&=-\int_{0}^{T} x_{0}(\tau) d \tau \\
& \Rightarrow \int_{-T}^{T} x_{0}(t) d t=0
\end{aligned}
$$

(b) show that

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x e(t) d t=A x \\
& \int_{-T}^{T} x(t) d t=\int_{-T}^{T}\left[x e(t)+x_{0}(t)\right] d t . \\
&=\int_{-T}^{T} x e(t) d t \quad \text { || Since we know } \\
& S_{-T} \text { x } x_{0}(t) d t=0
\end{aligned}
$$

Then

$$
\begin{aligned}
A_{x}=\lim _{t \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) d t & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x e(t) d t \\
& =A x
\end{aligned}
$$

(C) show that $x_{0}(0)=0$ of $x_{e}(0)=x(0)$

Since $x_{0}(0)=-x_{0}(-0)=-x_{0}(0)$,
the only number way to show that
$x_{0}(a)=0$ is that when $a=0$,
then $x(0)=x_{e}(0)+x_{0}(0)$

$$
=x e(\theta)
$$

There is a typo in the question Figure P2.11 The and signal is $x o(t)$ not $x e(t)$
(3) Given in Figure P.2.11 are file parts of a slgnal $x(t)$ and 1 is odd part $x_{0}(t)$, for $\tau \geq 0$ only; that is; $x(t)$ and $x_{0}(t)$ for $t<0$ ane not given, Complete the plots of $x(t)$ and $x_{e}(t)$, and giver aplot of the even part, $x_{e}(t)$, of $x(t)$, Give the equations used for plotting each part of the signals.

\# $\mathrm{xo}(-\mathrm{t})=-\mathrm{xo}(\mathrm{t})->$ symmetric w.r.t origin
$=>\mathrm{xO}(\mathrm{t}<0)$ is the reflection of $\mathrm{xo}(\mathrm{t}>0)$ w.r.t origin

$$
x_{e}(t)=x(t)-x_{0}(t)
$$

$$
x_{e}=\frac{x(t)+x(-t)}{2}
$$

for $t>=0$

$$
\begin{array}{ll}
t=1, & x e(1)=2-1=1, \\
t=1+, & y e(1+)=0-1=-1 \text { (} \text { (lift light limit) } \\
t=2, & x e(2)=0 \\
t=0, & x e(0)=\frac{z-2}{2}=0
\end{array}
$$

\# xe(-t)=xe(t) \rightarrow symmetric w.r.t $t=0$ line
$\Rightarrow x e(t<0)$ is the reflection of $x e(t>0)$ w.r. $t=0$ line

$$
x(t)=x_{0}(t)+x_{0}(t)
$$

$$
\begin{aligned}
& x(0)=0+(-2)=-2 \\
& x(0+)=0+2=2 \\
& x(1-)=1+1=2 \\
& x(1+)=-1+1=0 \\
& x(2)=0+0=0 \\
& x(-1)=1+(-1)=0 \\
& x(-1-)=-1+(-1)=-2 \\
& x(-2)=0+0=0
\end{aligned}
$$

(4) Prove mathematically thar tie signals given are perblic. For each signal, find the fundamental peris (To) and the fundamental frequency wo.
(a) $x(t)=7 \sin 3 t$
(b) $x(t)=\sin \left(8 t+30^{\circ}\right)$
(a) $x(t)=7 \sin 3 t$
$\rightarrow \sin (t)=\sin (t+n 2 \pi)$ for any integer n, so $7 \sin (3 t)=7 \sin (3 t+n 2 \pi)=7 \sin \left(3\left(t+n \frac{2 \pi}{3}\right)\right)$.
\rightarrow Therefore, $x(\neq)$ is periodic with fundamental period $T_{0}=\frac{2 \pi}{3}$
and fundamental frequency

$$
\omega_{0}=\frac{2 \pi}{T_{0}}=3
$$

(b) $x(t)=\sin \left(8 t+30^{\circ}\right)$
since $\sin (t)=\sin (t+n 2 \pi)$ for any integer n,

$$
\begin{aligned}
\sin \left(8 t+30^{\circ}\right) & =\sin \left(8\left(t+\frac{2 \pi}{8}\right)+30^{\circ}\right) \\
& =\sin \left(8 t+2 \pi+30^{\circ}\right)
\end{aligned}
$$

where $\omega_{0}=8$ and $7_{0}=\frac{2 \pi}{8}=\frac{\pi}{4}$

