EE103_Fall2017 HW#8

November 20, 2017

- 1. (a). Find $Vo(\omega)/Vi(\omega) = H(\omega)$ for the filter circuit below
 - (b). Find (b).

- (b). Find the 3dB frequency and the bandwidth.
- 2.6.25. Consider the system shown in Figure P6.25.
 - (a) Give the constraints on x(t) and T such that x(t) can be reconstructed (approximately) from $x_p(t)$.
 - **(b)** Give the frequency response $H(\omega)$ such that y(t) = x(t), provided that x(t) and T satisfy the constraints in part (a).
 - (c) Let $x(t) = \cos(200\pi t)$. If T = 0.004 s, list all frequency components of $x_p(t)$ less than 700 Hz.
 - (d) Let $x(t) = \cos(2\pi f_x t)$. Find a value of $f_x \neq 100$ Hz such that the same frequencies appear in $x_p(t)$ as in Part (c).

Figure P6.25

- **7.4.** Consider the waveform f(t) in Figure P7.4. This waveform is one cycle of a sinusoid for $0 \le t \le \pi$ s and is zero elsewhere.
 - (a) Write a mathematical expression for f(t).
 - **(b)** Find the Laplace transform for this waveform, using (7.4), and the table of integrals in Appendix A.
 - (c) Use the real-shifting property to verify the results of part (b).

Figure P7.4

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st} dt, \qquad (7.4)$$

INTEGRALS AND TRIGONOMETRIC IDENTITIES

INTEGRALS

$$1. \quad \int u \, dv = uv - \int v \, du$$

$$2. \qquad \int e^u \, du = e^u + C$$

$$3. \quad \int \cos u \, du = \sin u + C$$

$$4. \int \sin u \, du = -\cos u + C$$

5.
$$\int ue^u du = e^u (u - 1) + C$$

$$6. \quad \int e^{au} \cos bu \, du = \frac{e^{au}(a\cos bu + b\sin bu)}{a^2 + b^2} + C$$

7.
$$\int e^{au} \sin bu \, du = \frac{e^{au}(a \sin bu - b \cos bu)}{a^2 + b^2} + C$$

$$\mathbf{8.} \quad \int u \cos u \, du = \cos u + u \sin u + C$$

$$9. \quad \int u \sin u \, du = \sin u - u \cos u + C$$